skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Svanes, Eirik Eik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> Deformations of the heterotic superpotential give rise to a topological holomorphic theory with similarities to both Kodaira-Spencer gravity and holomorphic Chern-Simons theory. Although the action is cubic, it is only quadratic in the complex structure deformations (the Beltrami differential). Treated separately, for large fluxes, or alternatively at large distances in the background complex structure moduli space, these fields can be integrated out to obtain a new field theory in the remaining fields, which describe the complexified hermitian and gauge degrees of freedom. We investigate properties of this new holomorphic theory, and in particular connections to the swampland distance conjecture in the context of heterotic string theory. In the process, we define a new type of symplectic cohomology theory, where the background complex structure Beltrami differential plays the role of the symplectic form. 
    more » « less
    Free, publicly-accessible full text available January 29, 2026
  2. A<sc>bstract</sc> We consider a heterotic version of six-dimensional Kodaira-Spencer gravity derived from the heterotic superpotential. We compute the one-loop partition function and find it can be expressed as a product of holomorphic Ray-Singer torsions. We discuss its topological properties and potential gauge and gravitational anomalies. We show these anomalies can be cancelled using Green-Schwarz-like counter-terms. We also discuss the dependence on the background geometry, and in particular the choice of hermitian metric needed for quantisation. Given suitable topological constraints, this dependence may again be cancelled by the addition of purely background-dependent counter-terms. We also explain how our methods provide the one-loop partition functions of a large class of more general holomorphic field theories in terms of holomorphic Ray-Singer torsions. 
    more » « less